A rotational search procedure for detecting a known molecule in a crystal. Errata. By Eaton E. Lattman and Warner E. Love, Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Charles and 34th Streets, Baltimore, Maryland 21218, U.S.A.
(Received 17 February 1971)

A recently published paper with the above title (Lattman \& Love, 1970) contains three errors which require correction:

On page 1855, column 2, fourth line below equation (2), replace \mathbf{C} by $\widetilde{\mathbf{C}}$.

On page 1855 , column 2 , equation (4), replace $\widetilde{\mathbf{C}}$ by \mathbf{C}.
On page 1856, column 1, equation (6) and following, read:

$$
\begin{equation*}
\Delta^{2}=(1 / V) \cdot \int_{V}[R(\theta)-\bar{R}]^{2} \mathrm{~d} V \tag{6}
\end{equation*}
$$

Here V is the volume explored in θ space, \bar{R} is \cdots.

Reference

Lattman, E. E. \& Love, W. E. (1970). Acta Cryst. B26, 1854.

Acta Cryst. (1971). B27, 1479

Further refinement of the structure of p-nitrobenzoic acid.* By S. S. Tavale and L. M. Pant, National Chemical Laboratory, Poona, India

(Received 16 March 1971)

Abstract

The structure of p-nitrobenzoic acid has been refined further after including hydrogen atoms and using anisotropic temperature factors; final R for 744 observed reflexions is 0.074 and the average estimated standard deviation in bond lengths is $0.006 \AA$. The central aromatic bonds are shortened from the normal value in crystalline benzene, although the shortening is more in p-nitroaniline and p-aminobenzoic acid; these results probably indicate that cooperative electronic interaction between the para substituents in the latter compounds must be only partly responsible for the shortening of the central aromatic bonds.

In the structure of p-nitrobenzoic acid reported earlier (Sakore \& Pant, 1966; hereinafter referred to as paper I), the central aromatic bonds are of normal length. This result is expected because both the para substituents are electron-withdrawing groups and no resonance interaction is expected. However, in view of the shortening of the central aromatic bonds in terephthalic acid (Bailey \& Brown, 1967), a molecule which has electron-withdrawing

* Communication No. 1548 from the National Chemical Laboratory, Poona, India.
carboxylic groups in para positions, it was felt that the structure of p-nitrobenzoic acid should be refined thoroughly to decide whether there is in fact central-bond shortening in this molecule. In paper I, hydrogen atoms of the aromatic ring were not included in the structure refinement, and only individual isotropic temperature factors were used.
The refinement was started with the parameters given in paper I. Hydrogen atoms were included in the structure refinement and anisotropic temperature factors were introduced; five cycles of refinement decreased R by about

Table 1. Final atomic and thermal parameters
Thermal parameters $\left(\times 10^{4}\right)$ are of the form $T=\exp \left[-\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{23} k l+2 b_{13} h l\right)\right]$.

	x	y	z	b_{11}	b_{22}	b_{33}	b_{12}	b_{23}	b_{13}
C(1)	0.4163 ± 0.0003	0.4987 ± 0.0009	0.0896 ± 0.0002	49 ± 2	308 ± 18	16 ± 1	-1 ± 6	6 ± 4	3 ± 1
C(2)	0.4898 ± 0.0003	0.6421 ± 0.0009	$0 \cdot 1293 \pm 0.0002$	42 ± 2	346 ± 20	20 ± 1	-5 ± 6	-7 ± 4	1 ± 1
C(3)	0.4590 ± 0.0003	0.8345 ± 0.0009	$0 \cdot 1689 \pm 0 \cdot 0002$	49 ± 2	368 ± 21	18 ± 1	-11 ± 6	-1 ± 4	1 ± 1
C(4)	0.3536 ± 0.0003	0.8881 ± 0.0009	$0 \cdot 1666 \pm 0 \cdot 0002$	54 ± 2	275 ± 17	15 ± 1	-3 ± 6	-2 ± 3	4 ± 1
C(5)	$0 \cdot 2790 \pm 0.0003$	0.7492 ± 0.0010	$0 \cdot 1281 \pm 0.0002$	46 ± 2	368 ± 19	19 ± 1	-1 ± 6	-1 ± 4	4 ± 1
C(6)	$0 \cdot 3105 \pm 0.0003$	0.5525 ± 0.0009	0.0896 ± 0.0002	40 ± 2	338 ± 20	20 ± 1	-9 ± 6	-9 ± 4	4 ± 1
C(7)	0.4525 ± 0.0003	$0 \cdot 2878 \pm 0.0009$	0.0490 ± 0.0002	47 ± 2	305 ± 18	17 ± 1	-1 ± 6	8 ± 4	2 ± 1
O(1)	0.5464 ± 0.0002	$0 \cdot 2407 \pm 0.0007$	0.0487 ± 0.0001	49 ± 2	405 ± 14	23 ± 1	9 ± 5	-21 ± 3	3 ± 1
O(2)	0.3798 ± 0.0002	$0 \cdot 1585 \pm 0.0006$	0.0147 ± 0.0001	48 ± 2	412 ± 15	23 ± 1	2 ± 5	-35 ± 3	2 ± 1
$\mathrm{O}(3)$	$0 \cdot 3821 \pm 0.0002$	$0 \cdot 1783 \pm 0.0007$	$0 \cdot 2504 \pm 0.0002$	66 ± 2	515 ± 18	27 ± 1	-15 ± 6	-46 ± 4	3 ± 1
O(4)	0.2295 ± 0.0002	$0 \cdot 1722 \pm 0.0007$	$0 \cdot 1983 \pm 0 \cdot 0001$	60 ± 2	440 ± 16	28 ± 1	32 ± 5	-4 ± 3	8 ± 1
N	0.3184 ± 0.0003	0.0933 ± 0.0008	$0 \cdot 2085 \pm 0.0002$	57 ± 2	329 ± 16	22 ± 1	-12 ± 6	-8 ± 4	13 ± 1
H(1)	0.408 ± 0.004	0.034 ± 0.012	-0.007 ± 0.002						
H(2)	0.560 ± 0.004	0.602 ± 0.011	$0 \cdot 131 \pm 0.002$						
H(3)	$0 \cdot 512 \pm 0.004$	0.931 ± 0.011	$0 \cdot 200 \pm 0.002$						
H(5)	0.210 ± 0.004	0.813 ± 0.012	$0 \cdot 130 \pm 0 \cdot 002$						
H(6)	0.261 ± 0.004	$0 \cdot 470 \pm 0.012$	$0 \cdot 064 \pm 0.002$						

